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On thermally forced stratified rotating fluids 
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Axisymmetric steady motion of an inhomogeneous rotating fluid is considered. A 
system of equations, with appropriate boundary conditions, controlling the smooth 
interior fields is derived under the assumption of small dissipation and small side- 
boundary conductance. It is argued that this system, being derived without lineariza- 
tion of the equations, might form the basis of valuable numerical analysis. Assuming 
sufficiently weak forcing, i.e. high insulation of the non-horizontal boundaries, a 
linear system is derived. An explicit solution is presented and discussed for a particu- 
larly simple and important case. 

1. Introduction 
We consider in this paper axisymmetric steady motion of an inhomogeneous rotating 

fluid. We deal only with thermally forced flow. 
Non-axisymmetric motion has been the object for extensive though mostly experi- 

mental work in the past (see, e.g., Fowlis & Hide 1965). The theoretical basis for these 
experiments has been rather weak, in fact not even the basic symmetric state has been 
fully understood. Previous thoeretical studies of steady flow include some papers by 
Barcilon & Pedlosky (1967a, b) .  Their analysis differs most importantly from the 
present one in that they linearize the differential equations from the outset. This pro- 
cedure leads to an extremely restrictive condition on the magnitude of the fluid motion 
that can be allowed. 

McIntyre (1968) analysed a much more realistic flow r6gime. His analysis, although 
physically most clarifying, was not entirely complete from a theoretical point of view 
(and could not have been because of certain basic difficulties op cit., p. 644). It is 
different from the present analysis in that unlike McIntyre, we have introduced the 
finite conductance of the bounding surfaces as a parameter to  control the rate of ther- 
mal forcing, which leads to a completely tractable theory. I n  this respect the present 
paper is a natural continuation of the analysis given by Walin (1971), where similar 
but non-rotating systems were considered. 

I n  $ 2  the basic equations and boundary conditions are presented: we adopt the 
Boussinesq approximation. The equations are non-dimensionalized and the basic 
parameters presented. Among these is the Rossby number, R, based on an unknown 
velocity scale. It is pointed out that R is not really independent but is essentially 
controlled by properties of the boundary, i.e. the parameter SL which depends on 
the conductance of the boundary. The quantity s-l, as defined by equation ( 2 . 2 ~ )  may 
be thought of as the ‘thermal thickness’ of the boundary while L is a characteristic 
length scale of the container. 

I n  $ 3  we explore the consequences of letting the dissipation parameter, E ,  become 
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very small. It is found that the system degenerates to a state characterized by a, 
possibly smooth interior with thin boundary layers in the vicinity of the boundaries. 
The equations governing the interior fields (V) are found to become ' semi-degenerate ' 
in that two of the original four dissipative terms disappear, namely those in the radial 
and vertical momentum equations (2.1 a, c ) .  In  general, the interior equations remain 
nonlinear, although the remaining nonlinearity can be expected to be much less 
severe than the original one. 

The boundary-layer equations are derived and it is found that without further 
assumptions they become linear to lowest order in E .  In  fact they differ little from the 
ordinary Ekman- and buoyancy-layer equations. In  the derivation of the boundary- 
layer equations for small E we limit the analysis to a right circular cylinder. 

It is found possible to integrate the boundary-layer equations separately. Conse- 
quently we are able to derive, in explicit form the boundary conditions to be satisfied 
by the degenerate set of differential equations controlling the interior fields, $1. 

It is found that the original four boundary conditions (on the velocity vector and the 
temperature) reduce to two conditions on each boundary. The resulting system of 
equations for $1, being nonlinear, cannot be handled analytically in general. We think, 
however, that this system (or systems developed in a similar way) form a suitable basis 
for numerical analysis. The reason is that the greatest difficulty hampering any 
numerical description, namely the boundary-layer character of the solution, has been 
removed. This might perhaps open interesting possibilities for studying the non- 
linear dynamics of the interior numerically. 

In  $ 4 we discuss the relation between the Rossby number R and the properties of the 
boundary as expressed by sL. We then introduce an expansion in R into the system of 
equations and boundary conditions for $1 derived in 5 3. If the flow is characterized by 
R < 1 then the basic temperature field varies linearly or exponentially in the vertical 
and the horizontal temperature variations are small. Three cases are discussed sep- 
arately; in the most important case we demonstrate explicitly how the linearization 
procedure leads to a well-posed boundary-value problem for the basic temperature 
field as well as the deviations therefrom, i.e. the baroclinic vortex motion. 

We also discuss a rather peculiar case in which the boundary conditions are chosen 
to create a non-divergent vertical boundary layer. This discussion leads to an interest- 
ing qualitative prediction which could be relatively easy to verify experimentally. 

In  $ 5  we discuss a very simple and straightforward example which is solved 
explicitly. The case chosen is simply a vertical cylinder stratified by a temperature 
difference between top and bottom but having imperfect sidewall insulation. 

In $ 6 we discuss some qualitative features illustrated by the example of $5. Most 
importantly we find two separate vertical scales one being the width L of the cylinder, 
the other the Lineykin depth (Lineykin 1955) L/(Bu)*, where B is a measure of the 
relative importance of stratification and rotation, and u is the Prandtl number as 
defined by equations (2 .6b ,  c ) .  In $ 7  finally we discuss some appealing experimental 
possibilities and also the results of some preliminary experimental efforts of our own. 

2. Basic equations 
We consider steady, axisymmetric convection in a container rotating with angular 

velocity Rk. We use a cylindrical co-ordinate system ( r , # , z ) .  The rotation vector 
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Rk, the gravitational acceleration -gk and the axis of symmetry are all assumed 
parallel to  the z axis. We adopt the Boussinesq approximation and assume that the 
centrifugal acceleration is small compared with the gravitational acceleration. Under 
these circumstances the governing equations may be written 

uu,+wuz- - v 2 - 2 R v  1 = 

r 

1 
r 

uv, f wv, + - uv + 2 R u  = v 

1 1 

Po PO 
UU’, + U’WB - - gaT = - - p ,  + VVZW, 

( 2 . l a )  

( 2 . l b )  

( 2 . l c )  

1 
- (ur), + u’, = 0, 
r 

(2 .1  d )  

( 2 . l e )  uT, + wTz = K V ~ T ,  

where (u ,  v, w )  is the velocity vector in the co-ordinate system ( r ,  9, z ) ;  T a n d p  are the 
deviations in temperature and pressure from the state of constant temperature To, 
density po, and pressure po = - po gz + constant; v and K are the diffusivities of momen- 
tum and heat while a is the coefficient of thermal expansion. 

The fluid is bounded by a rigid semiconducting wall i.e. we have 

on all boundaries, 
(u,  v, w )  = 0, 

n.VT = s(T-  f), 
( 2 . 2 a )  

( 2 . 2 b )  

where n is a unit vector normal to the boundary, pointing into the fluid region. f and 
s are prescribed functions of position on the boundary. Physically 9 may be thought 
of as the prescribed temperature outside the boundary while s is related to the thick- 
ness, d,  of the boundary by the formula 

L 1  s = -  - 
k ‘ d ’  

( 2 . 2 c )  

where $and k are the heat-conductivities of the wall material and the fluid respectively. 
We introduce the following non-dimensional variables into equations ( 2 . 1 )  and ( 2 . 2 ) .  

( r ,z)  = L(r’ ,z’) ,  ( 2 . 3 ~ )  

( 2 . 3 b )  

( 2 . 3 ~ )  

(T, P )  = AT(T’, P r ) .  ( 2 . 3 d )  

We assume the aspect ratio to be of order one thus letting L represent the vertical as 
well as the horizontal scale. We anticipate that the strongest motion occurs in the zonal 
direction and define U to  be scale of that  motion i.e. 

v’ N 1, ( 2 . 3 e )  

(u,  v, w) = U(U’, v’, w’), 

p = Pp’ = gLaATp‘, 

u’,w’ 5 1. R 3 f )  
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The scale P is chosen in anticipation of hydrostatic balance in the main part of the 
fluid region. Finally we assume that the temperature field and the prescribed function 

are characterized by the same scale AT. Dropping the primes we thus obtain 

and 

B B 
R R R(uw, + WW,) - - T = -- p4 + EV2w, 

1 
- (ur),. + w, = 0, 
r 

( 2 . 4 ~ )  

(2 .4b)  

( 2 . 4 ~ )  

(2 .4d )  

(2.4e) 
E 

R(uT,+ wT,) = - V2T, 
CT 

on all boundaries. 
( U , V , W )  = 0, 

n. VT = sL(T - p )  

Equations (2 .4 )  contain the following externally controlled parameters 

E = v /2QL2 ,  

B = gaAT/p, L(2Q)2 ,  

CT = V / K .  

R = U / 2 Q L  
The Rossby number 

( 2 . 5 ~ )  

(2 .5b)  

( 2 . 6 ~ )  

(2 .6b)  

( 2 . 6 ~ )  

(2 .6d )  

is not an independent parameter since the velocity scale is not externally controlled. In  
the boundary condition (2 .5b )  however we have the quantity sL which is a prescribed 
function of position on the boundary. The magnitude of sL (for which we are not intro- 
ducing a separate symbol) serves as an external forcing parameter. A primary task 
for us is thus to find out how R (i.e. U )  is related to sL. 

3. The inviscid limit 
3.1. Interior equations 

We will next derive the equations governing our system in the inviscid limit. We thus 
assume 

E+O ( 3 . 1 ~ )  

while the external quantities 

(BCT and s L )  stay finite. ( 3 . l b )  

On R we impose the restriction 

R S  1,  ( 3 . 1 ~ )  
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a weak condition, which, however, in principle should be checked subsequently. 
Recalling that v N 1 by definition it is easily seen from (2 .4 )  that 

(u, W )  N E .  

Making the substitution 

( 3 . 2 ~ )  

(u, w, v, P, T )  = (EuI, EW', d, PI ,  TI) (3 .2b)  

we find the following set of equations valid to lowest order in E.  

( 3 . 3 ~ )  

(3 .3b)  

TI = p i ,  (3 .3c)  

( 3 . 3 4  
1 
- (uIr), + w,' = 0, 
r 

Rv(u'T,' + W'T') = V2T'. (3 .3e)  

Equations (3 .3 )  have lost two of the four dissipative terms present in (2 .4 ) .  Thus the 
order of the system has been lowered and solutions to (3 .3 )  are unable to satisfy the 
complete boundary conditions as given by (2 .5 ) .  We thus expect boundary layers at  
least somewhere in the region. We note however that dissipation remains important 
in the interior irrespective of how small we make E .  This phenomenon, typical for 
rotating non-homogeneous flow, has been pointed out earlier, see e.g. McIntyre (1968). 

3.2.  The boundary layers - a right circular cylinder 

As already mentioned equations (3 .3 ) ,  although valid in the main part of the region, 
cannot describe the system everywhere. 

Primarily we then expect the appearance of boundary layers in the vicinity of the 
rigid boundaries. We thus assume 

g5 = $I+$", ( 3 . 4 ~ )  

where $ represents the complete solution for any dependent variable, g5I represents a 
solution to equations (3 .3)  while $B is non-zero only in a thin layer close to the bound- 
ary. This definition is then to be interpreted quantitatively as 

V$I N $I ,  V$B.n N Vg5B x n N g5", 

where 6 < 1 is the thickness of the boundary layer and where n is a unit vector normal 
to the boundary. 

The equations governing $B is obtained in the following way: 
(i) Insert $ = $ I +  dB into equations (2 .4) .  
(ii) Subtract equations (3 .3 ) .  Note that $I will remain in the resulting equations 

(iii) Find the approximate form of these equations to lowest order, assuming E and 
owing to the presence of nonlinear terms in (2 .4 ) .  

6 to be small. 
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In  this process a relation between E and S is normally found. We thus obtain two 
sets of dependent variables, satisfying different sets of differential equations. These 
two sets of dependent variables should together satisfy the complete boundary con- 
ditions i.e. we have 

( 3 . 5 ~ )  

(3 .5b)  
on all boundaries 

(EuI+uB,Ezd+d ,#+~~)  = 0 

n. V(TI+ TB)  = sL(TI+ TB-  9) 
Furthermore from the definition of qP we have an additional condition 

(TB, uB, WB, vB) +- 0 c/S+ 00 (3.5c) 

where S is the thickness of the boundary layer (in which g5B is non-zero) and 6 is the 
distance from the boundary. Note that we can in general not solve the equation for 

separately since we have no separate boundary conditions for $I. 

We now limit the analysis to a right circular cylinder 

r < l ,  - h < z < h .  
We thus have 

r =  1, 

Z =  +h,  
(Eur+uB, Ed+@, VT+vB) = 0 on 

(TI+TB), = ?(sL)*(T1+TB-T*) on z = +h, 

(TI+TB), = -(sL),(TI+TB-Tv) on r = 1, 

where we have introduced the notation 

sL = (sL)* on z = +h,  

sL= (sL), on r =  1, 

$=T* on z = + h ,  

?=T, on r =  1. 

The region under consideration is illustrated in figure 1.  
In  the following we will assume that 

( 3 . 7 ~ )  

(3.7b) 

( 3 . 7 4  

( 3 . 7 4  

in accordance with our general scaling requirement (3.1).  We will however allow (sL)+ 
to take on large values i.e. 

(sL)* 2 1 (3.8b) 

since this as we will find does not influence the procedure of approximation. 
We now make a slight generalization in that we allow a volume flux M, to pass 

through the system. We thus assume that conditions (3 .7)  apply everywhere except 
at the corners where we allow fluid to enter or leave the system. Physically we imagine 
a narrow slot between the cylindrical bounday and the upper and lower end plates 
allowing fluid to enter and leave the system respectively. Of course, from continuity, if 
fluid enters at one corner an equal amount will leave a t  the other. This generalization 
follows naturally since we already have a discontinuity in our analytical description a t  
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Buoyancy layer-- I 
-I 

Interior --- 

i 
L - - - - L. -1- J 

--c 

- 2L- 

FIGURE 1. Illustration of the cylindrical region introduced in $3.2. ( (SL) , ,  T+) and ((d),, T,) are 
the parameters entering the thermal boundary conditions (3.7c, 6). The arrows indicate a possible 
flow pattern. 

the corners where our different boundary-layer types meet. In  fact the boundary- 
layer fluxen do not automatically match at  the corner unless we make them do so with 
an extra continuity requirement. This means that we can without any complication 
prescribe a certain jump in the boundary-layer flux corresponding to a volume flux 
entering or leaving the system. Such a jump will automatically appear if we prescribe 
a net volume flow through the region. 

To make our system complete we thus prescribe 

R / ; ( E d + w B ) Z n r d r = D I , E ,  - h c z < h .  (3.9) 

We assume that M, - 1, i.e. that the volume flux forced by M, is of the same order as 
that carried by wI. Note that we have different scales for e.g. w’ and w”. In  fact for 
#3 we will keep the scaling introduced in 0 2 throughout the analysis to avoid extensive 
introduction of new notations. 

3.3. The vertical boundary-layer equations 

The procedure to derive the boundary-layer equations becomes relatively compli- 
cated because of the presence of the nonlinear terms in (2.4). The details are very simi- 
lar to the case treated by Walin (1971) and will not be presented here. The result is 
however relatively simple. Thus we find: 

p+” = 0, v: = 0, (3.10a, b )  

1 
r 
- (uBr),+ w,” = 0, 

( 3 . 1 0 ~ )  

(3.10d) 

E 
RwBTf  = - TE. 

CT 
(3.10e) 
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In order to keep down t,he number of symbols we have not introduced any special 
stretched boundary layer co-ordinate. This means that the small parameter E remains 
in the equations. The transformation required to eliminate E is 7 = ( 1  - r )  E-4. We 
conclude that the boundary-layer thickness is given by 

6 = E4. (3.11) 

Making use of condition ( 3 . 5 ~ )  i.e. 

(pB, vB) -+ 0 when (1 - r )  E-4 + cc, 

equations (3.10) simplify to 
p B =  0 ,  V B  = 0, (3 .12a ,  b )  

( 3 . 1 2 ~ )  
B 
- TB = EWE, 
R 

(3 .12d)  
1 - (uBr), + w," = 0, 
r 

(3.12 e )  

We thus find that the vertical boundary layer is governed by the ordinary buoyancy- 
layer equations despite khe nonlinearity of the interior dynamics. For the derivation of 
(3.10) it is necessary that 

T B  4 TI. (3 .13)  

This condition follows however from the boundary condition (3.7 d )  whenever 

(SL), -g 8-1 
which in view of (3 .11)  is a consequence of (3.8).  Note that equation ( 3 . 1 2 ~ ~ )  should be 
interpreted in the sense that p B  is small enough to be neglected in ( 3 . 1 0 ~ ) .  If for some 
reason an evaluation o f p B  is required we must of course bring in more terms in (3 .10a) .  
Note also that (3 .12b)  simply means that vB 4 1 i.e. vB 4 d, a result of direct import- 
ance in the subsequent derivation of boundary conditions for $I. 

3.4.  The  horizontal boundary-layer equations 

Following a similar procedure as for the vert,ical boundary layer we obtain for the 
boundary-layer contribution in the vicinity of the horizontal boundaries: 

-vB = EuE, uB = EVE, (3 .14a ,  b )  

pB = 0,  ( 3 . 1 4 ~ )  

(3 .14d)  
1 
- (uBr), -I- w," = 0, r 

E 
RuBTf = - TE. 

(r 

In  the derivation of (3 .14)  it is necessary to require 

(3 .14e)  

and 
(3.15 a )  

(3 .15b)  
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within the boundary layer. Recalling that vl - 1 a t  least in the main part of the interior 
it might appear as if (3.15) were hard to  satisfy. This is not so however. I n  fact (3.15) 
is a consequence of previous assumptions and does not imply any further restriction on 
our theory. To see this it is sufficient to recall that  

w l 5 E  

which, in accordance with well-known properties of the Ekman layer, implies that 
(uB, vB, vz) N E* within the boundary layer. We thus have v1 - 1 in the interior and 
d N Eh in the Ekman layer. Locally, in the vicinity of the boundary, vz is thus much 
smaller than in the main part of the region. This is no contradiction but merely implies 
a homogeneous boundary condition on vz as discussed in the next subsection. 

Again we have not introduced a stretched boundary layer co-ordinate in (3.14). The 
transformation 5 = E-t(h T z )  eliminates E from (3.14). We conclude that we have the 
same boundary-layer thickness 

6 = E: (3.16) 

for the horizonbal as for the vertical boundary layer. 

3.5. Derivation of the boundary conditions for $I  

The main purpose of the boundary-layer analysis is to derive the correct boundary 
conditions for the interior part $1 of the solution. Since equations (3.3) governing 
have a lower order than (2.4) the number of boundary conditions on must be smaller 
than on the complete solution q5 = qS+ qP. In  fact we will find that the original four 
conditions given by (3.7) are replaced by two conditions on each boundary to be 
applied on qS when solving the degenerate equations (3.3). 

Let us begin with the vertical boundary. We thus derive an expression for the verti- 
cal boundary-layer flux in terms of $land prescribed quantities. This may be obtained 
by integrating equation (3.12e) and by applying the thermal boundary condition. 
Recalling that T" < Tz we obtain 

1 
mB = 1 wBdr 

ro 

where the integration is through t,he boundary layer, i.e. 

(I-rJE-4 % 1. 

(3.1 7 a) 

(3.17 b )  

(3.17 c) 

From equation (3.12b) and the boundary condition on vz+vB in (3.7a) we conclude 
that the appropriate boundary condition on vz must be 

v l=O on r = l  (3.18 a )  

which in view of (3.3a, c) may be expressed in terms of TI as 

T,'=O on r =  1. (3.18 b )  

The last term in ( 3 . 1 7 ~ )  is thus dropped and we obtain 

(3.19) 
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Applying the boundary condition on d + u B  in ( 3 . 7 ~ )  and the continuity equation 
(3 .12d)  we obtain 

(3.20) 

We conclude that the boundary condition on t? + vB simplifies to 

v I = O  on z = & h .  (3.21) 

Recalling also that UB N Et ,  uz N 1 we conclude that the boundary condition on 
E d +  uB simplifies to 

UB = 0 

while U I  is arbitrary on the horizontal boundary. The boundary condition on 

w = E d + @  

gives rise to a relation between d and the boundary-layer flux. From continuity we 
obtain directly 

2nrmE = f ' E d 2 n r d r  at z = k h 
0 

( 3.22 a)  

m E = j  uBdz, (3.22 b )  
E 

where denotes integration through anyone of the horizontal boundary layers. s, 
Equation (3 .22a)  tells us how the boundary-layer flux mE is determined by u?. 

Integrating equations (3 .14a ,  b ,  d )  we may of course derive a relation between t? and 
W I  familiar from the Ekman theory. The smallness of mE as dictated by (3 .22)  would 
however only lead to the result v1 = 0, in consistency with (3 .21) .  The boundary-layer 
flux mE is thus determined by W I  rather than by t?. 

Finally we turn to the consequences of the thermal boundary condition. We thus 
integrate equation (3 .14e)  obtaining 

E 
RT:mE=&-TT,B z = & h  

U 

which when combined with (3 .22)  and the thermal boundary condition ( 3 . 7 ~ )  yields 

T i  + RvTf j' wlr dr = T (sL)-+(Tz - T*) on z = & h. (3.23) 
0 

Equations (3 .21)  and (3 .23)  are the appropriate boundary conditions to be satisfied 
by $1 on the horizontal boundaries. 

Finally we must express the 'overall continuity' condition (3 .9 )  as a condition on 
#I.  Making use of (3.19) we thus obtain from (3 .9 )  

In summary our expectation is that $I may be determined from equations (3 .3 )  
together with conditions (3.181, (3 .20) ,  (3 .21 ) ,  (3 .23)  and (3 .24) ,  i.e. we expect this set 
of equations and boundary conditions to form a well-posed boundary-value problem. 
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4. Linearization of the inviscid limit 
In  this section we will perform an expansion in the parameter R in order to arrive a t  

a system of equations which can be handled analytically. As discussed in the introduc- 
tion we thereby want to illustrate that the nonlinear system derived in 9 3, a t  least in a 
linear subrange, defines a well-posed boundary-value problem. 

Let us begin with a short discussion of the relation between R and the boundary 
conditions on derived in $3.  The forcing is provided by the inhomogeneous boundary 
conditions (3.20) and (3.23). Suppose first that 

(sL), = 0, (sL)* = constant, T* = constant. ( 4 . 1 ~ )  

Physically this is the 'trivial ' case with perfectly insulated side-wall and constant 
temperature a t  the top and bottom. It is intuitivelyobvious and easilyshown from (2.1) 
that in this case all motions vanish and that TI is a function of z only, i.e. 

(u, V, w,) = 0, R = 0, TI = T&. (4.16) 

The intensity of motion in our system, i.e. the size of R, is associated with deviations 
from the state defined by (4.1). If (sL), =!= 0 we obtain directly from (3.20) 

R 5 (SL),. ( 4 . 2 ~ )  

The type of forcing defined by ( 4 . 2 ~ )  corresponds to fluid being pushed out of or 
sucked into the vertical boundary layer, creating a meridional circulation which 
through the action of the Coriolis force accelerates a zonal vortex motion. 

We note that (sL), determines the boundary layer flux while R is related to the 
variation of this flux. Thus in special cases we may have R < (sL),, which motivates 
the inequality sign in ( 4 . 2 ~ ) .  The forcing on the horizontal boundaries is associated 
with horizontal variations in ( s L ) ~  and/or T+ 

From (3.3a, c) we have R N T,'. With this relation in mind we find from (3.23) that 

(4.2b) 

If the maximum value of R as given by (4.2) is small we may expand our system of 
equations in R. 

We thus introduce 
T' = T(") + RT(') + . . . , 
v' = d') + Rd". . . , 

UI = u(') + Rd2). . . , 

wl = R-lw(O) + w(') + . . . . 

( 4 . 3 4  

(4.3b) 

(4.3c) 

( 4 . 3 4  

For (sL),, T,, T* we choose the following form 

(sL), = (sL)$" + R(sL)L'' + . . . , ( 4 . 4 4  

T, = T;')+RTL''+ ..., (4.4b) 

T*= TT)+RT$'+ .... (4.4c) 
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For the properties of the horizontal boundaries expressed by (sL)* we introduce two 

(i) (4.4d) 

(ii) (sL)+ 9 R-l. (4.4e) 

Regarding the form of the expansion (4.4) we note that TI - 1 since TI is  scaled with a 
given external quantity AT, vI - 1 from the definition of R, UI  - 1 follows naturally 
from (3.3b) while &may be of order 1 or R-l in view of (3.3d, e ) .  

alternatives 

(sL)* = (sL)$" + R(sL)$) + . . . , 

Introducing (4.3) in (3.3) we obtain after some manipulation 

T(0) = T('J)(z), ( 4 . 5 ~ )  

(4.5b) 

(4 .54  
and 

(4.6b) 

( 4 . 6 ~ )  

Introducing (4.3) in the boundary conditions we obtain from (3.20) 

d ((sL)/p)(K - Tio)) = O  on r = l  
dz 

(4.7a) 

from (3.23) with (sL)* N 1, 

(i) Tio) = T (sL)$')(T(O)- TF)) a t  z = k h; (4.7b) 

and with (sL)* $ R-1 

(ii) T(O) = TT) at z = f. h; (4.7c) 

from (3.24) 

Examining the boundary conditions further we obtain the following: from (3.18) 

v(l) = O on r = I ;  
from (3.20) to second order 

( 4 . 8 ~ )  
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from (3 .23)  with (sL)* N 1 to second order 

r 
2 

(i) Ti')+v-u:(O)T~'' = T (sL)g)(T(O)-T$))T (sL)$)(T(l)-TY)) on z = + h  ( 4 . 8 d )  

and with (sL)* R-1, 

(ii) T(1) = T(l) on z = h; (4 .8e )  i 

from (3 .24)  to second order 

Equations (4 .5 )  and ( 4 . 7 )  determine the 'basic' field (T{:], ~ ( 0 ) )  while the perturbations 
(T(l), dl), 0, ~ ( 1 ) )  are determined from (4 .6 )  and (4 .8 ) .  

It is immediately clear from (4 .5 )  that TLo) is either a linear or an exponential function 
of z .  This is otherwise stated: If a rotating non-homogeneous fluid is characterized by 
(B ,  a )  - 1 then the only allowed strongly stratified states (i.e. with T f  < 5";) either 
have a linear or an exponential density distribution. The conclusion is independent of 
the boundary conditions and thus valid for more generally shaped regions than the 
cylinder considered here. 

I n  general ( 4 . 7 a )  requires that 

i.e. that  (sL)L") = 0. Under special circumstances ( 4 . 7 a )  may be satisfied even though 
(sL)io) $; 0. I n  case (sL)i0) = 0 we find from ( 4 . 7 4  that  Mo = 0 implies w(O) = 0. This 
suggests separate study of three cases: 

(A) (sL)~') = 0, No = 0 ( ~ ( 0 )  = 0); 
(B) (sL);') = 0, Mo $: 0 ( ~ ( ' 1  $: 0); 
(C) (SL) iO)  $; 0, Mo = 0 ( d o )  $; 0). 

Case A: Linear basic stratijication 

I n  general ( 4 . 7 a )  implies that  
( sL)p  = 0. (4 .9a )  

The special case when ( 4 . 7 a )  does not have this consequence will be discussed sep- 
arately in case C below. We also assume 

Mo = 0. (4 .9b)  

From (4 .5 )  and (4 .7 )  we then find 

w(0) = 0 , T(O) = C+Dz, (4 .10a ,  b )  

where C and D are determined either through (4 .7b )  or ( 4 . 7 ~ ) .  We conclude that we 
must require 

( 4 . 1 0 ~ )  
d 
dr 
- ( T p ,  sL!j') = 0. 
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Eliminating T(1) from (4.6a, d) and applying (4.10) we obtain from (4.6b, d) 

or 
(4.11) 

This equation illustrates in a simple way the inter-dependence forced upon (&, dl)) 
by the thermal-wind relation ( 4 . 6 ~ ) .  Combining (4.11) with the continuity equation 
(4.6e) we obtain 

Furthermore from (4.6b) we have 

(4.12 a )  

(4.12b) 

Equation (4.12) may of course be combined into a single equation for dl). 

Making use of (4.9) and (4.10) we obtain from (4.8a, b) 
Let us now derive boundary conditions in a suitable form for equations (4.12). 

v(1) = 0 on r = 1, ( 4 . 1 3 ~ )  

(4.13 b) 

where we note that the right-hand side of (4.13 b) is a known function of z. Also making 
use of the thermal-wind relation we obtain from (4.8c, d,  e) 

w(1) = 0, (4.13~) 

(4.13d) 

(4.13e) 

wherewenote that (4.13d)should beusedwhen (sL)* N 1 and(4.13e)when(sL)* 9 R-l. 
Finally we obtain from (4.8f) 

or when combined with (4.6d) 

cj 1 rV2T(l)dr = (sL)&)(T(O) - TIP)). (4.14) 

We will comment below on this last condition. Equations (4.12) together with condi- 
tions (4.13) form a perfectly well-behaved boundary-value problem which completely 
determines u(1) and ~(1). If however we then want to solve for w(1) and T(I) through the 
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use of (4 .6a )  and ( 4 . 6 ~ )  we will find that the solution for T(l) will contain an arbitrary 
function of z while w(1) will contain an arbitrary function of r .  The extra condition 
(4.14) serves to  remove this indeterminacy. 

Case B: Exponential basic stratijication with non-zero net $OW Mo 

Again we 'let' ( 4 . 7 ~ )  imply 

but we now allow 

From (4 .5)  and (4 .7)  we obtain 

(SL)$O) = 0 ( 4 . 1 5 ~ )  

Mo =k 0. (4.15 b)  

~ ( 0 )  = Mo/2n, (4.16 a )  

gM0 (4.16 b )  T(0) = F exp - z + G ,  
251. 

where F and G are determined either through (4 .7b )  or (4 .7c ) ,  subject to the restriction 
( 4 . 1 0 ~ ) .  

I n  this case there is no equivalence to equations (4.11) and ( 4 . 1 2 ~ )  because of the 
factor g in ( 4 . 6 d ) .  We may however derive a single equation for 0. We thus have 

We thus want boundary conditions in terms of v(1) if possible. Such boundary condi- 
tions may in fact be derived in a straightforward manner. They become fairly com- 
plicated and will not be written down here. We note only that the second term in 
( 4 . 8 d )  which reflects the heat advection of the Ekman layers is of importance in the 
case with (sL)+ N 1 i.e. with semiconducting horizontal boundaries. 

Case C : Exponential stra.ti$cation with non-divergent vertical boundary layer 

Let us explore the possibility that  ( 4 . 7 ~ )  is in fact satisfied even though (sL)',o) + 0. We 
will thus consider the case 

(SL): =k 0, Mo = 0.  (4.18a, b )  

We are not interested in the 'trivial' case T(0) = TLO). Thus we require that 

be a constant or in view of ( 4 . 7 d )  

From (4 .5 )  we obtain, as in the foregoing case B, that 

T(O)(z) = F exp uw(0)z + G 
(4 .19)  and ( 4 . 2 0 ~ )  a,re compatible if 

UW(*) = (2(sL)L0))t, 5";') = G ,  

(4.19) 

( 4 . 2 0 ~ )  

(4.20 b)  
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which obviously implies that Tho) as well as (sL)ko) are constants. We obtain 
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where 
T$] = TLo) + F exp yz, 

y = (2(SL)$O))4, 

( 4 . 2 1 ~ )  

(4.21 b) 

where we have to keep in mind that we can accept only gravitationally stable solutions. 
This implies that the plus sign should be used when F > 0 and vice versa. 

The problem is now that we must satisfy two boundary conditions as given by 
(4.7b) or ( 4 . 7 ~ ) .  Having only one free constant in (4.21) we thus have an over-deter- 
mined system. Consequently (4.20) can be accepted as a solution if and only if the 
boundary conditions are chosen appropriately. From (4.21) and (4.7b) or ( 4 . 7 ~ )  we 
may derive the condition to be satisfied by the parameters in the boundary conditions. 
We obtain 

where 

and 
a = 1 when (sL)* > R-l. 

( 4 . 2 2 ~ )  

(4.223) 

(4 .22~)  

The system described by (4.18)-(4.22) is not a very general one. In  fact we have been 

(i) The insulation of the side walls as well as the temperature outside the side wall 

(ii) Likewise the top and bottom parameters (sL)$), TO, must be constant. 
(iii) Finally these thermal parameters have to satisfy the compatibility condit,ion 

The situation may be understood in the following way: 
The interior heat balance and the requirement of a non-divergent buoyancy layer 

locks the interior temperature field into an exponential variation, always decaying 
towards the side-wall temperature TLo) with a fixed rate of decay. The amplitude of the 
exponential is however free. We may thus adjust the exponential to the temperature 
prescribed at  one of the boundaries z = h. The compatibility condition (4.22) then 
guarantees that the exponential will automatically achieve the right temperature at 
the opposite boundary. 

We can also make the following interpretation. If all conditions imposed in this 
section except the compatibility condition (4.22) are satisfied our solution will not be 
valid. In fact the linearization breaks down and we expect strong vortex motion 
associated with fully-developed radial-temperature variations. We may thus make the 
qualitative prediction that by simply changing e.g. one of the temperatures TT), Tio) 
until (4.22) is satisfied, we will be able to slow down this vortex motion by an order of 
magnitude and bring the system into a state with small horizontal temperature 
gradients. 

Verification of this prediction should make a simple and appealing experiment. 
Turning now to the perturbation fields (dl), T(l)) we first note that the 'thermal' 

forced to assume: 

(i.e. the parameters (sL)i0), Tio)) are independent of z. 

given by (4.22). 
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FIGURE 2. General illustration of the simple special case discussed in 3 5. The system is stratified 
by a vert,ical temperature contrast. The side boundary has a small but finite conductance and is 
kept a t  consta.nt temperature on its outside. The result is a buoyancy layer with height inde- 
pendent divergence forcing a vortex in the interior as indicated in the figure. 

boundary condition (4.8b) cannot be expressed in terms of dl) in this case. We may 
however easily derive an elliptic equation (similar to (4.17)) and associated boundary 
conditions in terms of T(l), which form a well-posed boundary-value problem. 

5. A simple but basic example 
Let us now apply our t'heory to a particularly straightforward case, i.e. a right circu- 

lar cylinder without mean flow, with a warm upper and a cold lower boundary and 
semiconducting sidewall facing on the outside a constant ambient temperature (see 
figure 2). We also assume that the side wall has a small enough conductivity for the 
system to belong to the category treated under A in $ 4  (figure 2).  We thus have 

No = 0, ( 5 . 1 ~ )  

(sL)Ip' = 0, (5.lb) 

Tio) = constant, ( 5 . 1 ~ )  

(sL)L1) = co ( = constant), (5 . ld)  

W)* 9 R-l, (5 . le)  

(TT), TT)) = constant. 

From (4.10) we find 
T(0) = T(O) - + 

having assumed (without loss of generality) 

TY) - TP) = 1. 



824 L. Rahm and G. Walin 

From (5.1) and (4.13) we obtain the following boundary conditions to be applied on 
equation (4.12). 

dl) = O on r = I, (5.3a) 

vL1) = 0 on z = f h. (5.3d) 

Furthermore we note that the continuity equation (4.6 c) implies that nonsingular 
solutions satisfy 

u(l) = O at r = 0. (5.3e) 

A solution to (4.12a), which satisfies the inhomogeneous boundary condition (5.3 b )  
and the regularity condition (5.3e) but is otherwise completely general may be written: 

u(l) = - cr + C (DZ sinh a,. pz + E,* cosh a, pz) J1 (a,. T )  (5.4a) 
n 

where 
p2 = BU (6 .4b)  

and where a, is determined by the condition 

J,(an) = 0; (5.4c) 

DZ and EZ are arbitrary. Introducing (5.4) into (4.12b) and making use of the homo- 
geneous boundary condition (5.3~) we find that for v(1) 

cr 
8 

dl) = - (1  - r2)  + C(D,  sinh a,pz + En cosh a, pz) Jl(a, T )  

+~(Fnsinha,z+G,cosha,z)Jl(a,~), ( 5 . 5 ~ )  

where 

(5.5b) 

The unknown constants (D,, E,,, F,, G,) in (5 .5 )  should now be determined from the 
remaining boundary conditions (5.3c, d) on the horizontal boundaries. This may readily 
be done in terms of the coefficients A ,  defined by 

c - T (  1 - r2) = C A ,  Jl(a, r ) .  
8 

Introducing (5 .5 )  and (5.6) into (5.3c,d) we obtain 

+aD,+bE,+cF,+dG, = - A n ,  

pbD, 5 @En + dF, f cG, = 0, 

where 

( 5 . 7 4  

(5.7b) 

(a,  b, c, d )  = (sinh an/3h, cosh a,& sinh a, h, cosh a, h).  (5.7c) 
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FIGURE 3. Illustration of velocity and temperature fields for the case discussed in f 5 and illus- 
trated in figure 2. (a) The zonal velocity profile (v{S) for different values of the parameter 
p = ( B u ) ~ .  (b) Illustration of the zonal shear (aVcl)/az) for different values of B. Note that the 
adjustment to zero shear at z = & h  takes place in narrow regions when p $- 1 (the Lineykin 
depth). (c) The corresponding distortion of the isotherms Tco)+Tcl) = const. for a case with 
p $+ 1. The characteristic height values are shown in the figure. 

Solving for (D,, En, Fn, G,) we obtain 

D, = F, = 0, 

En = An- 
G 

@d-bG' 

we note that the disappearing of D, and Fn is a result of the vertical symmetry of the 
boundary conditions on (u(Q, dQ). 
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6. Discussion 
Some qualitative features of the solution described by (5.5)-(5.8) are discussed in 

this section and illustrated in figures 2 and 3. The vortex is unidirectional with the 
aame sign as the basic rotation. The angular velocity decays smoothly towards the 
horizontal as well as the vertical boundaries, as illustrated in figure 3 (a). The solution 
has two natural (non-dimensional) length scales (i) the width of the region ( N 1) (ii) the 
Lineykin depth ( N /3-1) (Lineykin 1955). 

Generally we expect the parameter p = ( B c T ) ~  to act as a natural scale ratio in the 
sense 

The situation is however not quite that simple because of the presence of two natural 
scales in the solution. These different length scales show up particularly well in the 
vertical distribution of the shear vA1) when /3 9 1.  We thus find that while v(1) itself 
adjusts smoothly to the boundary conditions, the shear varies strongly in thin layers 
of thickness p-’ close to z = k h as illustrated in figure 3 ( c ) .  Since the perturbation on 
the temperature field is directly related to vL1) [see equation (4.6a)l we expect that the 
distortion of the isotherms will have maxima close to z = k h  when /3 9 1 (see figure 

We note the difference to the timedependent case (Walin 1969) in which the ratioof 

The specific example analysed in Q 5 illustrates 
(i) some basic features of inhomogeneous rotating fluids subject to stationary ther- 

mal forcing, 
(ii) that the more general system discussed in Q Q 3 and 4, at least in a simple special 

case, leads to a well-behaved boundary value problem. 
We may thus hope that the system derived in $ 3  may lend itself to meaningful 

numerical computations in a flow regime which is perhaps of more than academic 
interest. 

3c). 

scales, in that case given by B3 instead of ( B c T ) ~ ,  dominates the system completely. 

7. Proposed experiments 
The analysis in this paper primarily suggests two experiments : 
(i) The system analysed in $ 5  appears as a particularly simple case for laboratory 

verification. From experiments one could also judge to what extent the qualitative 
features of the linear solution of 5 5 are changed when the forcing is increased and the 
interior dynamics becomes nonlinear. 

(ii) The special case C of $4 suggests a particularly simple experiment. 
One of the authors (Rahm 1976) has carried out some experiments to which the 

analysis in this paper applies. In this case the cylinder had a ‘perfectly insulated’ 
vertical boundary. The top and bottom plates were semiconducting and held at  con- 
stant but different temperatures on the outside. The forcing was provided by a varia- 
tion in the thickness of the bottom plate. The theoretical solution in this case shows a 
vortex with maximum strength a t  a height N /3-l. 

The vortex strength thus grows upwards throughout the Lineykin layer. At greater 
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t 
6.0 cm 

u( 1 O-) cm s-l) 

FIGURE 4. The predicted (solid line) and observed (0) velocity vs. depth (at radius 3.0 cm) for a 
case where a baroclinic vortex was forced by a non-uniform heat flux through the bottom as 
described in 3 7 .  The basic stratification was linear as the vertical boundary was insulated. The 
level of maximum velocity is shifted downwards as /I is increased. In  this case we had /? - 2. The 
dimensions of the experimental apparatus is shown in the upper right corner. 

height, in the case /3 > 1, the vortex decays with the larger characteristic scale N 1, 
i.e. of the order of the horizontal scale of the region. 

The experimental results (see figure 4), although not very accurate, substantiate the 
theoretical findings and we do feel the need for a more precise laboratory test of our 
analysis. We also think that the choice of boundary conditions in that experiment is 
more complicated to realize experimentally than the system analysed in $ 5 .  

The authors wish to thank the staff of the department for their assistance during the 
preparation of this paper. 
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